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Absiract. A computationally effective method for decomposing r-fold tensor products of
irreducible representations of U(¥) in a basis-independent fashion is given. The multiplicity
arising from the tensor decomposition is resolved with the eigenvalues of invariant operators
chosén from the universal enveloping algebra generated by the infinitesimal operators of the dual
(or complementary) representation.  Shift operators which commute with the U{N)} invariant
operators, but not the dual invariant operators, are introduced to compute the eigenvectors
and eigenvalues of the dual invariant operators algebraically, A three-fold tensor product of
irreducible representations of SU(4) is decomposed to illustrate the power and generality of the
method.

1. Introduction

The eigenvalues and eigenvectors of some Hermitian operators can bé computed
algebraically using raising and lowering operators. It is of considerable interest to ask
how this method can be generalized to other problems. In this paper we show that shift
operators, which are like raising operators restricted to an irreducible representation space,
can be used to resolve the U(N) multiplicity problem in a computationally effective way.
The motivation for constructing shift operators comes from papers by Hughes [1] in
which the eigenvalues and eigenvectors of an operator X are computed in order to break the
multiplicity of SO(3) representations of SU(3). Recall that the labels / and m, eigenvalues of
the total and z-component of angular momentum arising from the SO(3) subgroups of SU(3),
are not sufficient to specify a basis in a representation space of SU(3). The eigenvalues of
an additional operator -X in the enveloping algebra of SU(3) that commutes with SO(3) are
needed to specify a basis uniquely. Hughes introduced shift operators that commuted with
the z-component of angular momentum and acted like raising and lowering operators on L2,
Hughes used these shift operators to calculate the eigenvalues of X which are irrational.
We will reformulate Hughes’s problem using.the notion of dual representations. In order
to do this we begin by making some definitions. )

Definition 1.1. Let G and G’ be two groups. Let R and L be representations of G and
G, respectively on a Hilbert space F such that the two actions commute. Assume that the
representations R of G and L of G’ on F are completely reducible, i.e. are the direct sum
of irreducible representations; then we say that R and L are dual (or complementary) if the
spectral decomposition of R determines that of L completely and vice versa.
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If we consider the joint action L @ R of G’ x G on F, then L and R are dual if
F = Z HI*
x

and L ® R|zx is irreducible for each y, where y is an index that characterizes both an
irreducible representation of G and G'; Z* is the isotypic component of the representation
of G (respectively G') in F (ie. the largest G-invariant (respectively G’-invariant) subspace
of F which contains all imeducible representations spaces that are equivalent to the one
characterized by x) [2]. This generalizes the notion of complementary groups introduced
by Moshinsky and Quesne [3] and the notion of dual pairs by Howe [4].

The theory of dual representations will play an important role in resolving the
multiplicity problem for a group action restricted to a subgroup. Before we reformulate
Hughes’s problem and state the general multiplicity problem, we will define invarjant
operators of a group action restricted to a subgroup, and the main topic of this paper,
shift operators.

Definition 1.2. Let G be a Lie gronp which acts on a Hilbert space F. The infinitesimal
operators of this group action generate a Lie algebra. Let U(G) be the universal enveloping
algebra. Let H be a subgroup of G, and resirict the action of G on 7 to H. An operator
X € U(G) is an invariant operator of G restricted to H if [X, k] = 0 for all infinitesimal
operators k of the H action. We will denote the set of invariant operators of G restricted
to H by Cuiey(H).

As we will see shift operators are operators which map an irreducible representation
space into a given reducible representation space which intertwine and satisfy a given
commutation relation on the izrreducible representation space.

Recall that if V is a representation space of G, then V is called a G-module, and if V
and W are G-modules, Homg(V, W) denotes the vector space of all intertwining operators
from the G-modules V into the G-modules W.

Definition 1.3. Let G be a Lie group which acts on a Hilbert space F. The infinitesimal
operators of this group generate a Lie algebra. Let I{(G) be the universal enveloping algebra
generated by this Lie algebra. Let W ¢ F be an trreducible G-submodule. Let H be a
subgroup of G and let V' be an irreducible H-module. Let X, ..., X; be a commuting
family of Hermitian operators in Cyygy(H). If A € Homg(V, W), then A is a shift operator
if (X, Alf = M(VIAFYi=1,...,q,f € V, where ,;(V) is a scalar which depends
only on V and X;.

‘We call A a shift operator rather than a raising operator since the commutation relation
is only valid for elements f in V. We will also see that A shifts the eigenvalues of the
invariant operators X, ..., X,.

We will now reformulate Hughes’s problem in the language of dual representations,
invariant operators and shift operators.

For Hughes’s problem the Hilbert space F can be chosen to be the Fock space F(C2*?)
which consists of all holomorphic square integrable functions with respect to a Gaussian
measure (see section 2). The group G in his problem is SU(3) and the subgroup H is
SO(3). By the theory of dual pairs the group dual to G = SU(3) is &' = SU(2) and the
group dual to H = 80(3) is H' = 5p(4,R). Let W be an srreducible G-module and V
an irreducible H-module. It is known that Cyspu,R)y(SU(2)) = CusuEn(SO(3)). If the
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multiplicity of ¥ in W is ', then Hughes’s problem reduces to finding a commuting family
of operators in Cyspea,ry) (SU(2)) whose eigenvalues can be used to break the multiplicity,
and p shift operators in 4 (Sp{4, R}} which form an orthogonal basis for Homgoy (V, W).

The reformulation of Hughes’s problem in terms of dual representations suggests how to
formulate the general multiplicity problem of a group action restricted to a subgroup action.
Let & be a group which acts on a Hilbert space F and let W be an jreducible G-module,
Let H be a subgroup of G, and let V be an ireducible H-module. If we restrict the action
of G to H, then a state in W can be labelled by |x%, x, u?, n), where x© labels the
space W, ¥ labels V., u are the eigenvalues of commuting Lie algebra elements of H,
and 7 is a multiplicity label, which will be chosen to be eigenvalues of commuting invariant
operators. If G’ is the action dual to G on JF and H’ is the action dual to H on F, then
we have the following diagram:

'\ G
n U_’
H 7 =~ H

Note that when we restrict the action of G to H that the dual action gets larger. By the
theory of dual representations there is an irreducible G'-module, W, which is labelled by
xC and there is an irreducible H’-module, Wg-, which is labelled by x®. If we assume
Cupin(G) = Cue)(H), then the multiplicity problem reduces to finding a commuting
family of Hermitian operators, X1, ...; X; in Gyan(G') whose eigenvalues can be used to
break the multiplicity of V in W and shift operators which form an orthogonal basis for
Hompg(V, W).

We will now show how this general setup applies to the decomposition of r-fold tensor
products of U(N). Since the finite-dimensional irreducible representations of U(N) and
GL(¥, C) are the same, we will, in general, work with GL(N, C).

We want to decompose the tensor product V) @ ... @ Vo) of arbitrary irreducible
representations of GL(N, C), where (M), ..., (M¢)) are each dominant N-tuples of
integers. We begin by forming an n-tuple of integers (m) which is obtained by deleting
all zeros-from (M), ..., (M»). Our Hilbert space F is the Fock space F(C™V) (see
section 2). The group G which acts on F by right translation is

G =53L(N,(C) Hoeem X GL(N,Cl

"

r

and the action dual to & is
= GL{p;, C) x - - - x GL{p,, C}

where p; is the number of non-zero entries of (M(;). The space W = V¥ @...Q v¥m)
is an irreducible G-module and is labelled by (M). We restrict G to its diagonal
subgroup which we denote by H. Since H is isomorphic to GL(N, C), its dual action
is H=GL(n,C). LetV =_V("1> be an irreducible GL(N, C)-module and suppose that V
occurs in W with multiplicity . We have shown that Cygy(H) = Cyw(G”) [3], so our
problem is to find a commuting family of invariant operators in Cyy(G") which breaks
the multiplicity of ¥V in W and u shift operators in L{(H’) which form an orthogonal ba31s
for Homg(V, W).

In section 2 of this paper we will review our results concerning the decomposition of
arbitrary representations of U(¥). The main tools to carry out this decomposition are a
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Fock space in # x N complex variables which is the carrier space for tensor products, a
Frobenius reciprocity theorem which provides a method to compute the multiphicity, and
the theory of dual representations which will be used to construct Cy ey (G”).

In section 3 we prove the existence of shift operators for the temsor product
decomposition of arbitrary irreducible representations of U(N). The theorem shows that the
eigenvalues of our invariant operators depend only on (m). Further it gives us an algorithm
to generate the shift operators. The paper closes with a long example.

2. The decomposition of arbitrary tensor products of representations of U(V)

Let
FC*N) = {f CN S C| F holomorphiC,f |F(DPdu(Z) < oc}
Cn.xN

where z = (2g;) With Zy; = Xp; + e 1 Sa <, 1< j <N

1 n N
du(2) = —y exp(~ t(ZZ1) and dZ = [ ] dxe; dyus.

a=1 j=1

It is clear that F(C"*¥) is a Hilbert space with respect to the inner product:
o= [ FOiBD . e

Let P(C*™Y) = {p : C**¥ — C | p polynomial}, then it is clear that P is dense in F. If
we endow P with the ‘differentiation’ inner product given by

(p1, P2y = p1(DYp2(Z)z=0 - ' (2.2)

where p1(D) is obtained by replacing z.; by (3/9z,;), then it can be shown [5] that
{») = (-, )pgmwy. Computationally, this result is very important since it reduces the
inner product to differentiation of polynomials which is easily done on a computer. In fact
it can be shown that the set of all monomials in P(C"*¥) are orthogonal, and the norm of
a monomial is the product of the factorials of its exponents, so the inner product of two
polynomials further reduces to a weighted dot product.

Let H' = GL(n, C) act on C**¥N to the left and H = GL(N, C) act on TV to the
right, then these actions induce actions of F(C™*V) given by

ILBDFAZ) = FUADIZ) WZH)eC™VxH  feF
[R(g)fUZ) = F(Zg) V(Z,g) e C*N x H feF

Let (M) = (M, ..., M,) be an n-tuple of non-negative integers and define
du 0
PM =1 p e F|p polynomial, p(dZ) =djy' ...dY p(Z),Vd = )e D,;].

0 [
(2.3)
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The elements of P¥) are said to transform covariaﬁtl'y with respect to the left diagonal
subgroup Dy; further F(C™N) = 3 .y ®PW) (see [5,6]).
Let (m) = (m1,...,m,) be dominant, i.e. m; = my 2 --- 2 0 and define

by 0.
v®™ = ! p e F|p polynomial, p(bZ) = b} . b’"" JVAR S € B,
* I Ban
2.4

The elements of V¥ dre said to transform covariantly with respect to the lower triangular
subgroup B,. Furthermore, V™ is an irreducible representation space of G, and P ~
V(M;,O,....O) ®---Q V(M,l,[),...‘o) (SCB [5])_

In general, the space P is not invariant under the action of L so we introduce
PM = {p e F | p polynomial, p(AZ) = AM|p(Z)} where A € C and |M| = 31, M;.
It is clear that PM c PM| the actions of L and R commute on P! and leave PM!

invariant.

Next we define the isotypic component, Z(V{™) of V¥ C F, to be the sum of all
submodules in F which are isomorphic to V. If PI¥! contains a submodule isomorphic
to Vi, then Z(V®) c P! (see [5).. :

We will now show how to decompose VMm@ ... ® VMe) where (Myy) =
(M;1, ..., M;y) is the signature of an arbitrary irreducible representation of G. We begin by
forming an r-tuple of integers: (M) = (M,... Mpl,Mp,+;,.. s Mpgprs oo os Mpissp,)
where M, ..., Mp, are the p; non-zero entries of (M), Mp+1,..., Mp+p, are the pz
non-zero entries of (M), etc, and py 4+ -+ p, =n.

It is clear that H' contains the subgroup G = GL(pl, C) x --- x GL{p,, C) which
consists of all elements of GL(n, C) of the form

g1 0

0 g ,
where g} € GL(p;,O) Vi = 1,...,r. Let By, denote the lower triangular subgroup of
GL(p;, C) and define

by, 0
W = {p € F | p polynomial, p ( ) Z) =bﬁ‘. b p(Z),
0 - be

where by, € B, } 7 (2.5)

Then W ¢ pOD apd HD = VM) @ ... @ VM) (see [6]).
Let Log denote the infinitesimal operators of L which have the form

¥ 3
Lop=)  taks— ' @6)

Among these operators are the infinitesimal operatérs of G': Ly, g, Where

.
(ZPW)‘H aPi’IBP.: pr Yi=1,...,r

w=1 w=1
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The operators Le, g, " With o, < fp, lead us to the following characterization of W)
W = (p e P | Ly,p,p =0, Yap < Bp,i=1,...,r}. Hence W is the set of
all polynomials in P®? which are simultaneously annihilated by the operators Ly, g, with
o < Bp-

We have now shown how all irreducible representations of H and how tensor products
of arbitrary representations of H can be concretely realized as polynomials. We will now
show how we can compute the multiplicity of V™ in P}, This number together with
our characterization of W™ will lead us to the multiplicity of V™ in W™, Furthermore,
we will see that the invariant operators that we use to break the multiplicity commute
with the set of operators Ly, g, (without the condition o, < 85,) which means that we

can diagonalize the invariant operators on P first and then project the eigenvectors into
W,

In order to calculate the multiplicity of V™ in PU) we use the following Frobenius
reciprocity theorem (see [3]).

Theorem 2.1.

(a) If n € N then the frequency of occurrence of the irreducible representation of
GL(N, C) with signature (m1,...,my) in P*) i5 equal to the dimension of the weight
space (M, ..., M,,0,...,0) in Vimr—mn),

(b) If n > N then the frequency of occurrence of the irreducible representation of
GL{(N, C) with signature (my,...,my) in PMM) g equal to the dimension of the weight
space (M1, ..., My) in the representation space VMu-Mw) of GL(n, C).

Concretely, we can calculate the number of times V™ occurs in PWD, p(vim) piDy

with the help of Gelfand tableaux ¢ of weight (M). Recall that if

My Ma ... My
Min—1 «ov Mp_ln-
(m) .-
[#1 T
) myz2 M2z
min

is a Gelfand tableau, then ([T}) satisfies the betweeness relations m;; 2 ;g1 2 Miz1x

Yk =2,....m Y =1,...,k—1, then & has weight (M) if and only if 3,_ m;; =
S My, ¥i=1,...,n (see [7]). We have written 2 computer program to generate the set
of all Gelfand tableaux (["’r]) with weight (M) [8].

In order to find maps from V™ to P, we consider the infinitesimal operators Lg,
1 € o, £ n,in (2.6). These operators form a basis for a Lie algebra of H’ with
commutation relations:

[Ldﬁ’ Lyrp] = Lar,\‘sﬂy - Lyﬁarxn 1 "~<~. ws ﬁa V, n "'~<-. n (2'7)

and generate a universal enveloping algebra L{(H") of right invariant differential operators
which act on F. Moreover, by the Poincaré-Birkhoff-Witt theorem the ordered monomial
in Log forms a basis for (H’). Suppose that n(V?, p)) = 4, then, as a consequence
of Burnside’s theorem (see [7]), there exist g linearly independent elements in L(H'),
P1(Leg), ..., pp(Lop) which form a basis for the vector space Homp (V™ pMY), We
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will show by example in section 4 how the set of Gelfand tableaux .7 with weight (M)

¢
can be used to generate a basis for Homy (V) pU)y, "

If f € V™ then, in general, the polynomials py(Leg)f, ..., p#(La,.g) f e P are not
orthogonal. In order to obtain an orthogonal direct sum decomposition of (V@) N W&,
we must find operators which commute with the action of G' or, equivalently, with the
operators Lap, s, (without the condition a,, < f;), and that decompose Z(V®™) n W
into distinct eigenspaces.

To carry out this decomposition we concenl:rate on the action of G’ and its right dual
action on F(C**¥). Let Z € C**V and write Z in block form as

Z
Z=1 -
Z, ’ )
where each Z; isa p; x N matrix, 1 i r.
The action of G’ on Z is of the form:

&121
(gi,...,g,’.)—>|: : j| Vg, .-, £) e G
£ Z
Its dual action is therefore
. Zygy
(&1y.0- 8} : Y(g1,...,g) e G,
Z:8: _
By the theory of dual representations, to find operators in Z/(H") which commute with the

action of G is equivalent to finding operators in Z/(G) which commute with the action of
the diagonal subgroup H. Set

and let [R¢")] denote the matrix (R; R ‘)) :
Set[Li=(Luph 1 €, B < and write the matrix [L] in block form as

(Lt ... (Ll
()
[L]rl e [L]rr

where each [L],, is a p, X p, matrix, I < &, v < r. The following theorems gwe us the
explicit form of the operators that we are look:mg for (see o).

Theorem 2.2. In the universal enveloping algebra l/(H’), the elements of the form
Te([L)ugu [LJugus - « - [L1ugu } generate a subalgebra of Hermitian differential operators which

commute with the action of G’ on F (CreNy,

Theorem 2.3. The differential operators of form Tr([R®O]4 . [RPI1%), where d; are
integers > 0, Vi = 1, ..., r generate the same algebra of G’-invariant differential operators-
as those defined in theorem 2.2. .
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The operators defined in theorem 2.2 are Hermitian. Since they are Hermitian,
their eigenvalues are real and their eigenvectors are orthogonal, and we may diagonalize
them and use their eigenvectors to decompose Z(V™) n W7, For computational
purposes the operators Tr({L],,u,[L1uye; - - - [L1u,,) are more convenient than the operators
Tr((R(Pl))dl . (R(pa))dr)_

Observe that we may write

Tr([L]u]Nz[L]ugu3 e [L]l«l'4-u,|) = Z Z LajdzLﬂzdg nf,,rx;

=l =iy

and [y,...,I;, h1,..., hy depend on py,..., pr. The right operators Rj; which make up
Tr((RW)dy ., (R®D)Y) are of the form

(P'l)
Z kg az:;!

This shows that the operators Tr(fLluu,[Zlupu; - .. [L]en,) are more convenient since

P1. ..., pr only appear in the limits of summation, whereas the definition of Rg") depends
explicitly on p;. Furthermore, in the special case where ; =1 and h; =g, ¥i=1,.... 4,
the operator Tr([L]uu,[Lups; - - - [Elu,ny) is the gth-order Casimir operator of GL(r, C). It
is well known that the eigenvalues of these Casimir operators are integers [7], whereas
the eigenvalues of Tr([L]uu,[L]use; - .- [Llu,xy) can be irrational [8]. Our procedure for
diagonalizing the invariant commuting operators X...X, makes use of shift operators
defined in the next section.

3. Shift operators

Shift operators are like raising operators but restricted to a definite representation space.
We begin this section with the following theorem concerning shift operators defined in
definition 1.3.

Theorem 3.3. Suppose that the multiplicity of V™ in W) is 4 and let A, ..., A, be
# linearly independent intertwining operators consisting solely of lexigraphically ordered
lowering operators in I{(H’) which span Homy (V™ W), Let Xi,...,X; be a
commuting family of invarjant operators in Cyun(G') = Cu(G}(H) which break the
multlphclty of V@ in W), Then there exist I shift operators A1,..., A, such that
Ay fr-vo Ay f, are linear combinations of A f, ..., A, f whose coefﬁcxenrs are functions
of (m).

The proof of theorem 3.3 is essentially an application of the Poincaré-Birkhoff—Witt
theorem and is given in the thesis of Wills [10}. We have written computer programs [8]
to generate the matrices needed to obtain the shift operators using the algorithm described
in the proof of theorem 3.3. That we have a computationaily effective method can be seen
in the following example.
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4, Example .

4.1. Calculation of the shift operators associated with the irreducible representation (3,2,1,1)
of GL{4, C} in the tensor product V#1000 g y@.1.0.0) g v 1,0.0.0),

According to our procedures for breaking multiplicity, we consider the Fock space F(C>*4),
(p1 = p2 = 2, ps = 1), which contains the GL(4, C)-module P&12LU(C3*4), The
module PALZLD(C%) iy mrn, contains the submodule W®@LZLD(CS*%y which is
isomorphic to V&100 g y2L00 g y@.000  The submodule W&H2LD consists of all
polynomial functions in P@1L211 which are simultaneously annihilated by the operators
Liz =% z1(8/322) and L3 = 3 5_; z3(3/024). By theorem 2.1 the number of times
that V®2LD gceurs in P@ 1251} ig equal to the dimension of the weight space (2,1,2,1,1)
in VG2LLO  Recall that this dimension can be found by generating all Gelfand tableaux

G 2[:]! 9 with weight (2,1.2,1,1). Consider the Gelfand tableau

32110
(32110) i1 b i3 i
= i hh
[¢] | ki ke
l «

A basis element labelled by this tableau has weight (2,1 ,2,- 1,1) if and only if i) +iz+iz+is =
6, j1+ ja+ j3 =5, k1 + k2 = 3, [ =2 and the betweeness relations of the Gelfand tableau
are satisfied. This leads to the six possible tableaux: '

(32r10\ : 32110\ /32110
3210 3210 , 3210
320 ' 320 311
30 21 21

K 2 ) \ 2 / \ 2 )
32110 32110y 32110

(3111\ /2211 f3210
311 221 221 }
21 21 ' 21

K S, \ 2/ \ 2 )

Hence V®2LD gccurs in PELALY with multiplicity 6. We will now show how to use
these Gelfand tableaux to generate a basis for Homgy,cy (V&2 500, p@GLALYY For each
tablean we begin by forming a 5 x 5 matrix

32110
i1inizig 1
hhill
k1kr211
21211
and associate with this matrix the chain of spaces

yGE21L10 - P(il.lzqia;fd.l)‘_) P(.fhjz.fa,l,l) — plk,2L1 P(Q,l,?--l.l}_

Since the action of the lowering operator Lyg on P adds 1 to the a-slot and subtracts
1 from the S-slot, it is straightforward to find products of lowering operators which map
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V@2LLY o pALALY apd follow the chain above. For example, to find the map from
VE2LLY 4o p2LALY corresponding to the tableau

32110
3210
221
21
2

we first form the matrix

32110
32101
32011
30211
21211

and consider the chain of spaces: V&2L10 , pG.21L00 _, pG20OLD . pGOLLD _,
PAL2LY 1t is clear that the operator Ay = Ly L3,L43Lss maps V@210 jprg p@1LZLY
and follows the above chain. Similarly the operators cosresponding to the other tableaux are
given by Ay = LaiL3alasLsa, Ay = La1LagLlss, Ae = LatLsy, As = Laglsy, and Ag =
L3sLgyLsy. The operators Ap, ..., Ag form a basis for Homgre,gy (VEZ1L0, p@12L1DY,
Since p; =2, ps =2, p3 = 1, we consider the matrix:

[Lhi [Lliz (Ll
[L]= ([Lht [L]z [L]zs)
[L]sn [Llsz [Llss

where
_fLu Lz _ { L1islus _ (L
[Lln = (L21 Lzz) [Lla = (LBL%) [Lliz= (Lzs)
_{Ls1 Lz _(Lss Ly _f Lss
[L]Zl = (L41 L42) {L]22 - (L43 LM) [L]23 - (L4S)
[L]s1 =(Ls1 Ls2) [Llss =(Lss Lss) [L]as = (Lss).

By theorem 2.2 the invariant operator:

X =Te([L}2[ L)1 [L]1a[L]a1)
= Tr(([L]12[L121)%)

2 4
= Z Z LirLerstsi

I,j=1rs=3

commutes with the action of the subgroup G’ = GL(2,TC) x GL(2,0) x GL(1,C) of
H' = GL(5, C), i.e. X commutes with the entries of [L]11, [L]an, [L]sz. We will show that
X is sufficient to break the multiplicity of V(32119 jn W@12110 Tn order to diagonalize
X on W21 we diagonalize it first on P&1211 and then project into W&121.1 ysing
the operators Lqz and L34. This is valid since [X, L12] = [X, L34] = 0. So we calculate
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_ [X.A]f, i =1,...,6, using the procedure ouflined in the proof of theorem 3.3. These
calculations yield

[X, A1lf = (=28, +8A)f
[X, Aglf = (—2As —4As — 12K — 8A7) f
[X, Aslf = (—2A1 —2A2 —4A3 = 12A¢ — 6A7)f
[X AdS = (A2 — 28 ~ 64, — 247 — 285 —4A10)
[X,As]f = (A2 — 8A4 —22A5— -8As — 4A7 — 4A5 — 6Ag — 12Am)f
[X, Aslf = (—6Ay.— 14As — 10A3 + 6Ag — 2A9)F

where A7 = LayLaoLysLea, Ag = LoyyLapLlaalss, Ao = LajLisLass, Aio = Ly Lz Ls;.
Next we calculate [X, A;1f,{ =7,..., 10, to see if the procedure closes on itself. These
calculations yield

(X, A7]f = (4B + 247 f

[X, Aglf = (—4A; —8A7 — 65g) f

[X, Aglf = (—4As+4A3 + 12A6 + 8A7 — 6Ag) f
[X, Al = QA; + 457 +64s + 6A10) f.

Since this calculation does not yield any new operators, our process has closed upon itself.
Eventually, the procedure will always close upon itself since there are only a finite collection
of maps form V) into P™) which consist solely of lowering operators.

Thus, we must diagonalize the matrix:

(—2 0- =2 0 .0 —6 4 —4 0 2\

0 -2 =2 2 2 -4 0 0 -4 0

0 -4 -4 —2 0 —100 0 4 0

0 0 0 -6 -8 0 0 0 0 0
c_lo o o o -2 0 00 00
0 -12 —-12 0 —8 6 0 0 12 0

8 -8 —6 -2 -4 -2 2 -8 § 4

0 0 0 -2 -4 0 0 —6 0 6

6 0 0 0 -6 0 0 0 —6 0

\o 0 0 -4 -12 0 0 0 0 6/

The mgenvalues of the matrix C are: A; = =22, Ay =0, Az = 18, hg =—18, As, A = 6
A7, Ag, M. Ao = —6." The eigenvectors of C which give our shift operators are:

A==22 - A1 =A143A2+4A5+20A4+40A54+8As+4A7+5A5+15A5+20A10
A=0  Ap=A1+3A—-3A3- Ay

A =18 A3 =2A1 +6Ar2+3A5 = 9As— 244

h==18  Ay=A133A:4+3A343A6+20
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A=6 As=A1+2A5
As = Ag + 2410
A=—6 Ar=—A;~3A.4+3A3+9As+ A7+ 3Aq
Ag= A1 — Ay
Ao = Ay + Ag
A= Az + As.

To find how A7 f, ..., Awof depend on Aif,..., Asf, we must choose f € V&2LD and
form Aqf, ..., Awf explicitly. Let f = AIAZAIZAIZE then f is the highest weight
vector of VC"21 U (see [7]). Generating the polynomials Aif, ..., Aof, we find that
Asf = A¢f = Aof = Ayof = 0 which tells us:

Asf = =M f
Bgf =—Mf
Aof =—Mof
Asof = 3A1f.

Thus {Ay, ..., As} is a basis for Homgy s,y (V@210 p@&L2LDY Therefore, the six shift
operators which send V21D jpto pGL2LD gre

=-22 Ar=A;—3As+ A3 +5A4+ 10A5+2A¢

A=0 Ay =A1+2A7 —2As
=18 Az = A1 +2A2+ As —3As

= ~18 As=Az+ Az + Ag
A=—6 As= Ay — Az —3A,
r=—6 As = A1

It remains to find which of the eigenvectors of X, A;f,.. ., Agf are simultaneously
annihilated by Ljz and L3s. Using the polynomials found earher, we operate Ly» and
Las on each other and find that A, f, Aaf, Asf, and Asf are simultaneously annihilated.
Therefore, the multiplicity of V®211 in W(2,1,2,1,1) is four. Since the eigenvalues
corresponding to the polynomials that were simultaneously annihilated by X are distinct,
and X is Hermitian, the eigenvectors are obviously orthogonal. In conclusion, the four
intertwining operators that send V2.1 into four orthogonal (equivalent) submodules of
WELZLY e,

Ay = Ly L3, Laskss — 3La1LaglazLss + LatLaaLss + 5L31Lsy + 10L33Ls1 + 2L32L41Ls4
Ay =Ly 1% LasLsa+2L31LysLasLss — 2L31LagLsg

Az =Lyl LasLsy+2L31 LygLasLss + LasiLagLsy — 3LspLarLss

A4 = LaLaaLaskss — LarLaypLss — 3Ls1 sz
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and any element f € V@210 can be mapped with these operators into W& 62LD I
particular, if basis elements in V&2 and W&L2LD are chosen, it is straightforward
to compute the Clebsch—~Gordan coefficients relative to this basis choice. Similarly Racah
coefficients (which are already basis independent) can easily be computed; however, in this
case the invariant operators are determined by the coupling scheme that is chosen.

5. Conclusion

We have shown how to decompose an r-fold tensor product of arbitrary irreducible
representations using shift operators. Underlying our procedure is the use of polynomial
realizations of all the reducible representations of the unitary groups. These polynomial
realizations have the advantage of being basis independent; different bases, dictated by
physical considerations, result in different sets of polynomials, and the transformation
coefficients between the basis sets are easily calculated using the differentiation inner product
(2.2) defined in section 2. We are not interested in firding closed-form expressions for
Clebsch—Gordan or Racah coefficiénts but instead have given well-defined procedures that
can be adapted for the computer. We shall now briefly describe our procedures for generating
the shift operators for a given tensor product of arbitrary irreducible representations of U(N).

We assume that an r-fold tensor product of irreducible representations with signatures
M@y, .. .. (M) is given; the goal is to give an orthogonal direct sum decomposition of the
r-fold tensor product into irreducible representations of U(N). This is equivalent to finding
shift operators which map the irreducible representation space V™ into an orthogonal direct
sum of Z(V™) N H™_ We begin by forming an n-tuple of integers from the entries of
(Mq)), . .-, (M) by deleting the non-zero entries from each (M;). Next we introduce the
Fock space F(C"*¥} and define an action R of U(N) on F by right translation. In fact,
we only need to consider a finite-dimensional subspace of (C™*"), namely P“?, which
consists of polynomials which transform covariantly with respect to the diagonal subgroup
D, C GL(r, C). By theorem 2.1 the number of times that V™ occurs in P“? is equal to
the dimension of the weight space (M) in V) This multiplicity is calculated by generating
the set of all Gelfand tableaux ([’:‘]) with weight (A). We then use these tableaux to construct
a basis for Homg(V®, P®#0), The space W which is isomorphic to the r-fold tensor
product V¥ & ... ® (M) is defined to be the set of all polynomials in PU0 which are
simultanecusly annihilated by the infinitesimal raising operators of G', Lq, g, . We choose
a commuting family of invariant operators X,..., X, in Cy g (G’) whose eigenvalues
can be used to break the multiplicity of V¢ in W®*). To break this multiplicity we
construct shift operators ﬁl,...,fx,_‘ which satisfy [X,-f\j]f = l,-j(m)ﬁjf, i=1,...,q,
j=1,..., 1. To construct these shift operators we use the algorithm described in the proof
of theorem 3.1 to generate g-simultaneously diagonalizable matrices whose eigenvalues are
used to break the multiplicity and whose eigenvectors generate the shift operators. It should
be noted that our method of diagonalizing these invariant operators depends only on the
commutation relations of the Lie algebra generated by the infinitesimal operators of H' and
the action of these operators on the given irreducible representation space V. Finally we
form the polynomials A1 f...., A, F, where f € V™, and explicitly calculate Ly, g, A f
i=1,...,r,k=1,..., 1.

Those polynomials which are simultaneously diagonalized by all the L, 5, then give
us an orthogonal direct sum decomposition of Z{V@}) N WD,

There are still a nember of problems associated with the tensor product decomposition
of arbitrary irreducible representations of U(N). In this paper we have shown how the
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multiplicity problem may be stated for arbitrary group—subgroup pairs and then applied this
formalism to the decomposition of tensor products. In particular, we have shown that shift
operators always exist for this problem and given an outline of how these shift operators
can be generated. In a forthcoming paper we will discuss the computational aspects of this
problem as well as show how to deal with irrational eigenvalues of our invariant operators
[8]. We also plan to generalize Hughes’s problem, that is fo investigate the multiplicity
problem for U(N) restricted to SO(N) and to Sp(N).
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