
Shift operators and the U(N) multiplicity problem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 3229

(http://iopscience.iop.org/0305-4470/26/13/025)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 26 (1993) 3229-3242. Printed in the UK 

Shift operators and the U(N) multiplicity problem 

W H~Klinkt, Tuong Ton-Thatf and Randall G Willss 
t %"t of Physics and Amonomy, Univezsity of Iowa Iowa city, IA 52242, USA 
$ Department of~Mathematics, University of Iowa, Iowa city, IA 52242, USA 
$ Department of Mathematics, Southeastem Louisiana University, H m o n d ,  LA 70402, USA 

: ~ ,  

Received 6 July 1992 

Abstract. A computationally effective method for decomposing r-fold tensor products of 
irreducible representations of U(N) in a basis-independent fashion is given. The multiplicity 
arising from the tensor decomposition is resolved with the eigenvalues of invariant operators 
chosen from the universal enveloping algebra generated by the infinitesimal operators of th$ dual 
(or complementary) representation. ~ Shift operators which commute with the U(N) invariant 
operators, but, not the dual invariant operators, are inwoduced to compute the eigenvectors 
and eigenvalues of the dual invariant operators algebraidy. A three-fold tensor product of 
irreducible representations of SU(4) is decomposed to illustrate the powe! and generality of.the 
method. 

1. Introduction 

The eigenvalues and eigenvectors of some Hem~tian operators c& be .  Eomputed 
algebraically using raising and lowering operators. It is of considerable interest to ask 
how this method can be generalized to other problems. In this paper we show that shift 
operators, which are like raising operators restricted to an irreducible representation space, 
can be used to resolve the U(N) multiplicity problem in a computationally effective way. 

The motivation for constructing shift operators comes from papers by Hughes [I] in 
which the eigenvalues and eigeuvectors of an operator X are computed in order 10 break the 
multiplicity of SO(3) representations of SU(3). Recall that the labels 1 and m, eigenvalues of 
the total and z-component of angular momentum arising from the SO(3) subgroups of SU(3), 
are not sufficient to specify a basis 'in a representation space of SU(3). The eigenvalues of 
an additional operator X in the enveloping algebra of SU(3) that commutes with SO(3) are 
needed to specify a basis uniquely. Hughes introduced shift operators that commuted with 
the z-component of angular momentum and acted like raking and lowering operators on Lz. 
Hughes used these shift operators to calculate the eigenvalues of X which are irrational. 

We will reformulate Hughes's problem using.the notion of dual representations. In order 
to do this we begin by making some definitions. 

Definition 1.1. Let G and G' be  two groups. Let R and L be representations of G and 
G', respectively o n  a Hilbert  space^ F such that the two actions commute. Assume that the 
representations R of G and L of G' on F are completely reducible, i.e. are the direct sum 
of irreducible representations; then we say that R and L are dual (or complementary) if the 
spectral decomposition of R determines that of L completely and vice versa. 

0305470/93/133229+14$07.50 @ 1993 IOP Publishing Ltd 3229 
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If we consider the joint action L 8 R of G' x G on 3, then L and R are dual if 

and L 8 R l p  is irreducible for each x, where ,y is an index that characterizes both an 
irreducible representation of G and G'; 2 X  is the isotypic component of the representation 
of G (respectively G') in 3 (i.e. 'the largest G-invariant (respectively G'-invariant) subspace 
of F which contains all irreducible representations spaces that are equivalent to the one 
characterized by x) [2]. This generalizes the notion of complementary groups introduced 
by Moshinsky and Quesne [3] and the notion of dual pairs by Howe [4]. 

The theory of dual representations will play an important role in resolving the 
multiplicity problem for a group action restricted to a subgroup. Before we reformulate 
Hughes's problem and state the general multiplicity problem, we will define invariant 
operators of a group action restricted to a subgroup, and the main topic of this paper, 
shift operators. 

Defrnifion 1.2. Let G be a Lie group which acts on a Hilbert space 3. The infinitesimal 
operators of this group action generate a Lie algebra. Let U(G)  be the universal enveloping 
algebra. Let H be a subgroup of G, and restrict the action of G on 3 to H. An operator 
X E U(G) is an invariant operator of G restricted fo H if [X, h] = 0 for all infinitesimal 
operators h of the H action. We will denote the set of invariant operators of G restricted 
to H by Cu(qW). 

As we will see shift operators are operators which map an irreducible representation 
space into a given reducible representation space which intertwine and satisfy a given 
commutation relation on the irreducible representation space. 

Recall that if V is a representation space of G, then V is called a G-module, and if V 
and W are G-modules, HomG(V, W) denotes the vector space of all intertwining operators 
from the G-modules V into the G-modules W. 

Dejinition 1.3. Let G be a Lie group which acts on a Hilbert space 3. The infinitesimal 
operators of this group generate a Lie algebra. Let U(G) be the universal enveloping algebra 
generated by this Lie algebra. Let W c 3 be an heducible G-submodule. Let H be a 
subgroup of G and let V be an irreducible H-module. Let XI, . . . , X, be a commuting 
family of Hermitian operators in Cucc)(H). If K E HomH(V, W), then is ashijtoperator 
if [Xi, i]f = Ai(V)if Vi = 1, ~. . , q. f E V, where Ai(V) is a scalar which depends 
only on V and Xi. 

We call a shift operator rather than a raising operator since the commutation relation 
is only valid for elements f in V. We will also see that shifts the eigenvalues of the 
invariant operators XI, . . . , X,. 

We will now reformulate Hughes's problem in the language of dual representations, 
invariant operators and shift operators. 

For Hughes's problem the Hilbert space 3 can be chosen to be the Pock space 3(CZx3) 
which consists of all holomorphic square integrable functions with respect to a Gaussian 
measure (see section 2). The group G in his problem is SU(3) and the subgroup H is 
SO(3). By the theory of dual pairs the group dual to G = SU(3) is G' = SU(2) and the 
group dual to H = SO(3) is H' = Sp(4.R). Let W be an irreducible G-module and V 
an irreducible H-module. It is known that CU,,~,R))(SU(Z)) = C~(S"(~,)(SO(~)). If the 
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multiplicity of V in W is.&, then Hughes’s problem reduces to finding a commuting family 
of operatomin CU(S~(~,R))(SU(~)) whose eigenvalues can be used to break the multiplicity, 
and p shift operators in U(Sp(4, R)) which form an orthogonal basis for Howo(3)(V, W ) .  

The reformulation of Hughes’s problem in terms of dual representations suggests how to 
formulate the general multiplicity problem of a group action restricted to a subgroup action. 
Let G be a group which acts on a Hilbert space 3 and let W be an irreducible G-module. 
Let H be a subgroup of G, and let V he an irreducible H-module. If we restrict the action 
of G to H, then a state in W can be labelled by IxG. x H ,  p H ,  q ) ,  where xG labels the 
space W, x H  labels V , ~ p H  are the eigenvalues of commuting Lie algebra elements of H, 
and q is a multiplicity label, which will be chosen to be eigenvalues of commuting invariant 
operators. If G’ is the action dual to G on 3 and H’ is the action dual to H on 3, then 
we have the following diagram: 

G ’ I  1 ( G  
n 3 u  

H ’ 7  \ H  

Note that when we restrict the action of G to H that the dual action gets larger. By the 
theory of dual representations there is an irreducible G’-module, WO,, which is labelled by 
xG and there is an irreducible H’:module, WH,, which is labelled by x H .  If we assume 
Cu(,p)(G’) = Cu(c)(H), then the multiplicity problem reduces to finding a commnting 
family of Hermitian operators, XI, . . . , X, in C~(HT)(G’)  whose eigenvalues can be used to 
break the multiplicity of V in W and shift operators which form an orthogonal basis for 
Horns (V ,  W ) .  

We will now show how this general setup applies to the decomposition of r-fold tensor 
products  of U ( N ) .  Since the finite-dimensional irreducible representations of U(N) and 
GL(N, C) are the same, we will, in general, work with GL(N, C). 

We want to decompose the tensor product V(M(S) 8.. . 8 V(M(r)) of arbitrary irreducible 
representations of GL(N, C), where (M(l)), . . . , (&)) are each dominant N-tuples of 
integers. We begin by forming an n-tuple of integers (m) wliich is obtained by deleting 
all zeros~from (M(1)). . . . , @+)). Our Hilbert space 3 is the Fock space F(CnxN) (see 
section 2). The group C which acts on F by right translation is 

G = GL(N, C) X-. . . x GL(N, @) 

and the action dual to G is 

G’ = GL(pi, C) x . . . x GL(pr,  @) 

where p i  is the number of non-zero enpies of (M([) ) .  The space W = V(M(l)) 8.. .@ V(M(,)) 
is an irreducible G-module and is labelled by (M). We restrict G to its diagonal 
subgroup which we denote by H. Since H is isomorphic to GL(N, e), its dual action 
is H’ = GL(n,  C). Let V = V(m) be an irreducible GL(N, C)-module and suppose that V 
occurs in W with multiplicity p. We have shown that Cu(c)(H) = C ~ ( H I ) ( G ’ )  [5], so our 
problem is to find a commuting family of invariant operators in CU(~ , ) (G’ )  which breaks 
the multiplicity of V in W and p shift operators in @(H’) which form an orthogonal basis 
for HomH(V, W ) .  

In section 2 of this paper we will review our results concerning the decomposition of 
arbitrary representations of U ( N ) .  The main tools to carry out this decomposition are a 
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Fock space in n x N complex variables which is the carrier space for tensor products, a 
Frobenius reciprocity theorem which provides a method to compute the multiplicity, and 
the theory of dual representations which will be used to construct Cu(,rp)(G'). 

In section 3 we prove the existence of shift operators for the tensor product 
decomposition of arbitrary irreducible representations of U(N). The theorem shows that the 
eigenvalues of ow invariant operators depend only on (m). Further it gives us an algorithm 
to generate the shift operators. The paper closes with a long example. 

W H Klink et a1 

2. The decomposition of arbitrary tensor products of representations of U(N) 

Let 

f : CnxN + C I f holomorphic, If(Z)12dw(Z) e 00 

wherez= (&I) with&j =n,j +iyaj; 1 < U  fn, 1 f j < N .  

n N  1 
H"N 

dp(Z) = -exp(-t~(ZZ+)) and d Z = n n d & j d y a j .  
n=l j=1 

It is clear that 3 ( C n x N )  is a Hilbert space with respect to the inner product: 

Let P(CnXN) = [ p  : CnxN --f C I p polynomial), then it is clear that P is dense in 3. If 
we endow P with the 'differentiation' inner product given by 

where p l ( D )  is obtained by replacing &j by (a/a&j), then it can be shown [5] that 
(., .) = (., . ) I ~ ( C " ~ N ) .  Computationally, this result is very important since it reduces the 
inner product to differentiation of polynomials which is easily done on a computer. In fact 
it can be shown that the set of all monomials in P ( C n x N )  are orthogonal, and the norm of 
a monomial is the product of the factorials of its exponents, so the inner product of two 
polynomials further reduces to a weighted dot product. 

Let H' = GL(n, C) act on CnxN to the left and H = GL(N, C) act on CnXN to the 
right, then these actions induce actions of 3 ( C n X N )  given by 

[L(h')f](Z) = f((h')-'Z) V(Z,h')  E CnxN x H' f E 3 
[R(g)fl(Z) = f(zd W ,  g) E CnXN x H f E 3. 

Let (M) = ( M I ,  . . . , Mn) be an n-tuple of non-negative integers and define 

p E F1p polynomial, p(dZ) = d? . . . d z p ( Z ) ,  Vd = c' '.. ").-). 
dm 
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The elements of PJM) are said to transform covariantiy with respect to the left diagonal 
subgroup Da; further 3(exN) = @P(" (see [5 ,6]) .  

Let (m) = (ml,  . . . , m,) be dominant, i.e. m1 > mz > . . . > 0 and define 

0 
E 3 l p  polynomial, p(bZ)  = b z  . . . bi;p(Z) ,  Vb = ( y  ;.. b n n )  E E n )  . 

~ ~ (2.4) 

The elements of V(m) ire said to transform covariantly with respect to the lower triangular 
subgroup B.. Furthermore, V("') is an irreducible representation space of G ,  and P(" 2: 

In general, the space P(M) is not invariant under the action of L so we introduce 
PIMI = [ p  E 3 I p polynomial, p(AZ) = AIMlp(Z)} where A E C and [MI = Mi. 
It is clear that PcM) c PIMI, the actions of L and R commute on PlMl and leave PIMI 
invariant. 

Next we define the isotypic component, Z(V@") of V") c 3, to be the sum of all 
submodules in 3 which are isomorphic to !I("'). If plMl contains a submodule isomorphic 
to V"), then Z(V('")) c PlMl (see [5]) . .  

We will now show how to decompose V(M(l))  @ ... @ V(M(r)) where ( M t i ) )  = 
(Mi l ,  . . . , M ~ N )  is the signature of an arbitray irreducible representation of G .  We~begin by 
forming an n-tuple of integers: ( M )  = ( M I , .  . . , M p , ,  M p l + l , .  . . , M p L + p 2 , .  . . , Mp,+...+p,) 
where M I , .  . . , M p ,  are the p1 non-zero entries of (M,,)) ,  MP,+,, . . . , M,,+, are the pz  
non-zero entries of (Mp)), etc, and P I + .  . . + p,  = n. 

It is clear that H' contains the subgroup G' = GL(pl ,  C) x . . . x GL(p,, C) which 
consists of all elements of GL(n, C) of the form 

V(MI.0 ..... 0) @ . . . @ V(M,,O ...., 0) (see [5]) .  I 

(: '., O) 
g: 

where gi E GL(pi, C) V i  = 1 , .  . . , r .  Let BPI denote the lower triangular subgroup of 
GL(pi, C) and define 

p E 3 I p polynomial, p ( ( b : l  :.. ')Z) =b? ... b z p ( Z ) ,  

b ,  

Among these operators are the infinitesimal operators of G' : L,,ppi where 



3234 

The operators Lup,pn,' with up! < j3, lead us to the following characterization of W('): 
W ( M )  = [ p  E P(M) I Lap,8,p = 0, Vap, < Bpi, i = 1,. . . , r } .  Hence W ( w  is the set of 
all polynomials in P(w which are simultaneously annihilated by the operators Le,@, with 

We have now shown how all irreducible representations of H and how tensor products 
of arbitrary representations of H can be concretely realized as polynomials. We will now 
show how we can compute the multiplicity of V(") in P(M). This number together with 
our characterization of W ( w  will lead us to the multiplicity of V("') in W(w.  Furthermore, 
we will see that the invariant operators that we use to break the multiplicity commute 
with the set of operators L,,pP, (without the condition apt < Bpi) which means that we 
can diagonalize the invariant operators on PcM) iirst and then project the eigenvectors into 
W(M). 

In order to calculate the multiplicity of V")  in^ P(') we use the following Frobenius 
reciprocity theorem (see [5]). 

Theorem 2.1. 
(a) If n < N then the frequency of occurrence of the irreducible representation of 

GL(N, C) with signature (ml, . . . , mN) in P(w is equal to the dimension of the weight 
space ( M 1 , .  . . , M,, 0,. . . ,o) in V ( m l - - m ~ ) .  

(b) If n > N then the frequency of occurrence of ,the irreducible representation of 
GL(N, C) with signature (ml, . . . , mi) in P(m is equal to the dimension of the weight 
space ( M I , .  . . , MN) in the representation space V(Ml~--MN) of GL(n, C). 

W H Klink et a1 

f f P !  B P , .  

Concretely, we can calculate the number of times V('") occurs in P(M, n(V("'), P(w), 
with the help of Gelfand tableaux 5) of weight (M). Recall that if 

is a Gelfand tableau, then (:) satisfies the betweeness relations mf,k 2 mi,k-l > mi+l,k 
Vk = 2,. . . , n, Vi = 1,. . . , k - 1, then (G) has weight (M) if and only if d=, mi,k = 
ri==, Mw, Vi = 1, . . . , n (see [71). We have written a computer program to generate the set 
of all Gelfand tableaux (G) with weight (M) [8]. 

In order to find maps from V("') to Pew, we consider the infinitesimal operators Lmp, 
1 < a,@ 4 n, in (2.6). These operators form a basis for a Lie algebra of H' with 
commutation relations: 

L p .  L,,I = L a , b  - L,pL ,  1 < a, j3, Y.  v < n (2.7) 

and generate a universal enveloping algebra U(H') of right invariant differential operators 
which act on 3. Moreover, by the Poincar&Birkhoff-Witt theorem the ordered monomial 
in Lap forms a basis for U(H'). Suppose that n(V("'), = p, then, as a consequence 
of Burnside's theorem (see [71), there exist LC. linearly independent elements in U(H') ,  
p~(L,p), . . . , pp(Lup) which form a basis for the vector space HomH(V("'), P(M)) .  We 
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will show by example in section 4 how the set of Gelfand tableaux ~$) with weight (M) 
can be used~to generate a basis for HomH(V(*), P ( M ) ) .  

If f E Fm) then, in general, the polynomials pI(L,B)f, .  . . , p&,p)f E P) are not 
orthogonal. In order to obtain an orthogonal direct sum decomposition of Z(V"")) n W(m, 
we must find operators which commute with the action of G' or, equivalently, with the 
operators  lap,^, (without  the^ condition up, < &), and that decompose Z(Vcm)) n W ( M )  
into distinct eigenspaces. 

To cany out this decomposition we concentrate on the action of G' and its right dual 
action on F(CnxN).  Let Z E C"xN and write Z in block form as 

Z =  [ z'] .~ 
Z, 

where each Zi is a pi x N matrix, 1 < i < r.  
The  action^ of G' on Z is of the form: 

(gi,. ... g ;) + [ 3 V(gj, . . . , gi) E G'. 

Its dual action is therefore 

zlgl 
(gi, . .:, g,) + [ z;g,] ~ V g i , .  .. , g r )  E G. 

By the theory of dual representations, to find operators in U(H') which commute with the 
action of G' is equivalent to finding operators in U(G) which commute with the action of 
the diagonal subgroup If. Set 

and let [R(p')] denote the matrix (Rp)). 
Set [L] = (La#). 1 4 a, fi  < n and write the matrix [L] in block form as 

K I I 1  ... [Lll, 

[LIr1 ... [LIP, 
[L]= ( i i ) 

where each [LIIIu is a pn x p .  matrix, 1 < U; U < r .  The following theorems give us the 
explicit form of the operators that we arelooking for (see,[9]). 

Theorem 2.2. In the universal enveloping algebra, LI(H'), the elements of the form 
Tr([L].,,,[L],,,, . . . [L].,.,) generate a subalgebra of Hermitian differential operators which 
commute with the action of G' on ~F(CnxN). 

Theorem 2.3. The differential operators of form Tr([R(pd)IdL . . . [R(pi)ld<), where di are 
integers > 0, Vi  = 1, . . . , r generate the same algebra of G'-invariant differential operators 
as those defined in theorem 2.2. ~~ ~~ . .  
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The operators defined in theorem 2.2 are Hermitian. Since they are Hermitian, 
their eigenvalues are real and their eigenvectors are orthogonal, and we may diagonalize 
them and use their eigenvectors to decompose Z(V("')) n W(''0. For computational 
purposes the operators Tr([L],,,,[L].,., . . . [L],,,,) are more convenient than the operators 
Tr((R(PI))dL . . . (R(pd))dv). 

Observe that we may write 

and 11.. . . , 1,. hl,  . . . , h, depend on PI.. . . , pr. The right operators Rkl which make up 
Tr((R(P'))dj). . . (R@'))d,) are of the form 

This shows that the operators Tr([LJn~&l~zu3 . . . [L],@,J are more convenient since 
P I . .  . . , p ,  only appear in the limits of summation, whereas the definition of RF) depends 
explicitly on pi. Furthermore, in the special case where li = 1 and hi = q ,  Vi = 1,. . . , q ,  
the operator Tr([Ll.,,,[Ll,,,, . . . [L].,.,) is the qth-order Casimir operator of GL(n, e). It 
is well known that the eigenvalues of these Casimi~ operators are integers [7], whereas 
the eigenvalues of Tr(ILl,,,,[L],., . . . [Zl,.,) can be irrational [SI. Our procedure for 
diagonalizing the invariant commuting operators XI . . . X, makes use of shift operators 
defined in the next section. 

3. Shift operators 

Shift operators are like raising operators but restricted to a definite representation space. 
We begin this section with the following theorem concerning shift operators defined in 
definition 1.3. ~~ 

Theorem 3.3. Suppose that the multiplicity of V("') in W ( M )  is p and let AI,  . . . , A, be 
/L linearly independent intertwining operators consisting solely of lexigraphically ordered 
lowering operators in U(") which span Homa(V('"), W'"). Let XI, .... X, be a 
commuting family of invariant operators in Cu(,qq(G') = C~(G)(H) which break the 
multiplicity of Vcm) in W ( m .  Then there exist p, shift operators & I ,  . . . , such that 
Alf, .  . . , A,f, are linear combinations of Alf, . i . , h l r f  whose coefficients are functions 
of (m).  

The proof of theorem 3.3 is essentially an application of the Poincar&-Birkhoff-Witt 
theorem and is given in the thesis of Wills [lo]. We have written computer programs [SI 
to generate the matrices needed to obtain the shift operators using the algorithm described 
in the proof of theorem 3.3. That we have a computationally effective method can be seen 
in the following example. 
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4. Example , 

4.1. Calculation ofthe shift operafors associated with rhe irreducible representation (32 , lJ )  
of GL(4, C) in the tensor product V(2,'.o.o' 8 V(2.'.o,o) 8 V(l:o,O*O). 

According to our procedures for breaking multiplicity, we consider the Fock space 3(Csx4), 
(pl  = pz = 2, p3 = l), which contains the GL(4, C)-module P(2~1~231~1)(C5x4). The 
module P(z,1,2,1,1)(C5x4), in turn, contains the submodule W(2313z3131)(Csx4) which is 
isomorphic to V(2,1,0,0) 8 V(2.1,0,0) 8 V('.o.o.o). The submodule ~W(z.1*2.1*1) consists of all 
polynomial functions in P(zJ-zzl,l) which ace simultaneously annihilated by the operators 
LIZ = xi-l zlk(a/azzx)  and L34 = E:=, z3k(a/az4k). By theorem 2.1 the number of times 
that V(3,2,c1) occurs in P (z~ '~z~ l~ l )  is equal to the dimension of the weight space (2,1,2,1,1) 
in V(3.231,1,0). Recall that this~dimension can be found by generating all Gelfand tableaux 
(3 ' I O) with weight (2,1,2,1,1). Consider the Gelfand tableau [tl 

/3 2 1 1 01 

A basis element labelled by this tableau has,weight (2,1,2,1,1) if and only if il+iz+i3,+i4 = 
6,  j l  + j z  + j 3  = 5,  kl + kz = 3 , l  ='2  and the betweeness relations of %e Gelfand tableau 
are satisfied. This leads to the six possible tableaux: 

3 2  1-1 0 3 2 1 1 0  3 ~ 2  1 1 0  

3 2 1 1 0  3 2 1 1 0  3 2 1 1 0  

Hence V(3)2*1,1' occurs~ in P(z.l,z.l.')  with^ multiplicity 6. We will now show how to use 
these Gelfand tableaux to generate a basis for H O ~ L ( ~ , ~ ) ( V ( ~ . ~ ~ ' ~ ~ , ~ ) ,  P(z~l~z~l~r ) ) .  For each 
tableau we begin by forming a 5 x 5 matrix 

3 2 1 1 0  
it iz i3 id 1 

' ( k i W . 1 1 )  j1 j z  j3 1 1 

2 1 2 1 1  

and associate with this matrix the chain of spaces 

~(3.2.1.1.0) ~ p(i~,m,iAlY ~ pti~,h.6,1,1) ~ p ( k ~ , k d . l . l )  ~ p(2,1,2.1.1) 

~~ 
. 
Since the action of the lowering operator LUp on P(') adds 1 to ,the a-slot and subtracts 
1 from the p-slot, it is straightforward to find proaucts of lowering operators which map 
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V’~2p1*1*o) into P(2,1*2t1*1) and follow the chain above. For example, to find the map from 
V@s2.1,1*o) to P(z*l*al*l) corresponding to the tableau 

W H Klink et a1 

where 

commutes with the action of the subgroup G’ = GL(2,C) x GL(2.C) x GL(1.C) of 
X’ = GL(5, C), i.e. X commutes with the entries of IL111, [LIzz, [L]33. We will show that 
X is sufficient to break the multiplicity of V(3t2t1,1*0) in W @ ~ 1 ~ 2 ~ 1 ~ 1 ) .  In order diagonalize 
X on W”)l~z.lJ) we diagonalize it fust on P ( 2 J ~ z ~ 1 ~ 1 )  and then project into W(2*1***1*1) using 
the operators L I Z  and L34. This is valid since [X, L I Z ]  = [X, L H ]  = 0. So we calculate 
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[ X ,  AJf,  i = 1 , .  . . , 6 ,  using the procedure outlined in the proof of theorem 3.3. These 
calculations yield 

[ X ,  Ailf = (-2Ai + 8A7)f 

[ X ,  Azlf = (-2122 - 4A3 - 12.116 - 8Ai)f  

I 

[X, A3lf = (-2A1 - 2A2 - 4A3 -'l2& - 6Ai) f  

[X, A41 f (2A2 - 2h3 - 6A4 - 2 A i -  2As - 4A10) f 

[X, A51 f = (2AZ - SA4 - 22A5 7 SA6 - 4 4  ~~ - 4A8 - 6119 - 12A10) f 

[x, &If = ( -6Ai~-  14Az - Ion3 6h.5- 2A7)f 

where A7 = LzIL~zL~zLs~ ,  AS = L z I L ~ z L ~ z L ~ ~ , - A ~  =~ L ~ I L ~ z L ~ ~ ,  A& = L z I L ~ z L ~ z .  
Next we calculate [ X ,  & I f ,  i = 7, . . . , 10, to see if the procedure closes on itself. These 
calculations yield 

[ X ,  A7lf = (4Ai + 2A7)f 

[ X ,  &If 
[X, A91f = (-4Az +4A3 + 1211s + 8 A i -  6A9)f 

( - 4 A 1 7  8Ai - 6As)f 

[ X ,  Aiolf = (2Ai + 4 A i +  6As + 6Aio)f. 

Since this calculation does not yield any new operators, our process has closed upon itself. 
Eventually, the procedure will always close upon itself since there are only a finite collection 
of maps form V") into PCM) which consist solely of lowering operators. 

Thus, we must diagonalize the matrix: 

C =  

2 0~ -2 0 ~0 -6 4 -4 0 2 
(-0 -2 -2 2 2 -14 0 0 ~ - 4  0 

0 -4 -4 -2 0~ -10 0 0 4 0 
0 0 0 - 6 - 8  0 0 0  0 0  
0 0 0 0 - 2 2 0 0 0  0 0  
0 -12 -12 0 -8 6 0 0 12 0 
8 -8 - 6 ~  -2 -4 -2 2 -8 8 4 
0 0 0 - 2 - 4  0 0 - 6 0 6  
0 0 0, 0 -6 0 0 0  - 6 0  

( 0  0 0 -4 -12 0 0 0 0 6 

The eigenvalues of the mamix C &e: A1 = -22, A2 = 0, h3 = 18, A4 =~-18, h5, k6 = 6, 
AI, As, Ag, hi0 = - 6 . ~  The eigenvectors of C which give our shift operators a re  

A=-22 , A 1 = A i  +3hz+4A3 

A = O  

A = 18 

k =  -18 

I% = Ai + 3A2 - 3A3 - A7 ~~ 

A3 = 2121 + 6A2 + 3A3 - 9A,j - 2A7 

A4 = A I  + 3122 t 3A3 t 3 k j  + 2A7 
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A6 = A8 -!- 2A10 

A7 = -AI - 3A2 + 3A3 + 9A4 + A7 + 3A1o 

A 8  = - A7 

A9 = A1 +As  

Aio'= A2 +As. 

h = -6 

To find how A7 f ,  . . . , Aiof depend on hi f, . . . , As f ,  we must choose f E V@,hlzl)  and 
form I ? l f , .  . . , &of explicitly. Let f = AiA:;AiEA;E:, f is the highest weight 
vector of V@,2,1*1) - (see [71). Generating the polynomials A1 f, . . . , &of, we find that 

f = i i 6  f = A9 f =~iilo f = 0 which tells us: 

A7f =-LA 2 1  f 

Asf = -Aif 

A g f  = -Azf 

Aiof = $ A d .  

Thus (Al . .  . . , A61 is a basis for HO~~L(~,C)(V(~~~.~.'.~), P@31323131)). Therefore, the six shift 
operators which send V@*2*1*1) into are 

h=-22 A l = A i  - 3 A z + A 3 + 5 A 4 J r l O h s + 2 h ~  

A = O  

h= 18 

h = -18 

h=-6 

A2 = A1 +2Az -2A3 

A 3  =hi + 2 A z +  A3 - 3126 

A 4  = A2 + A3 + 116 

A5 = A2 - A3 - 3A4 
- 

X=-6  = Al. 

It remains to find which of the eigenvectors of X, Al f, . . . , f are simultaneously 
annihilated by LIZ and L34. Using the polynomials found earlier, we operate L u  and 
L34 on each other and find that AI f ,  A z f ,  A3 f, and f are simultaneously annihilated. 
Therefore, the multiplicity of V'3~2J"' in W(2,1 ,2 ,1 ,1 )  is four. Since the eigenvalues 
corresponding to the polynomials that were simultaneously annihilated by X are distinct, 
and X is Hermitian, the eigenvectors are obviously orthogonal. In conclusion, the four 
intertwining operators that send V(3*2*1z1' into foui orthogonal (equivalent) submodules of 
W(2.1,2,1,1) are: 

AI = L21L$~t43L54- 3L3lL3zL43L54 + L31442L54 + 5L31Ls2 + I O L ~ ~ L S ~ - +  2L32L41L54 

A2 = Lz1L:zL43L54 + 2L31L32L43L54- 2L31L42L54 

A 3  = Lz1L:2L43L54 + 2L31L32L43Ls4 + L31L42L54 - 3L32L41L54 

A 4  L31L32L43L54 - L31L42L54 - 3L31Lsz 
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and any element f E V(3,21J) can be mapped witkthese operators into W @ ~ l ~ z ~ l ~ l ) .  In 
particulir, if basis elements in V(3,2,1,1) and W(z.'.2.1.') are chosen, it is straightforward 
to compute the Clebsch-Gordan coefficients relative to this basis choice. Similarly Racah 
coefficients (which are already basis independent) can easily be computed; however, in this 
case the invariant operators are determined by the coupling scheme that is chosen. 

5. Conclusion 

We have shown how to decompose an r-fold tensor product of arbitrary irreducible 
representations using shift operators. Underlying our procedure is the use of polynomial 
realizations of all the reducible representations of the unitary groups. These polynomial 
realizations have the advantage of being basis independent; different bases, dictated by 
physical considerations, result in different sets of polynomials, and the transformation 
coefficients between the basis sets are easily calculated using the differentiation inner product 
(2.2) defined in section 2. We are not interested in finding closed-form expressions for 
Clebsch-Gordan or Racah coefficients but instead have given well-defined procedures that 
can be adapted for the computer. We shall now briefly describe our procedures for generating 
the shift operators for a given tensor product of arbicary irreducible representations of,U(N). 

We assume that an r-fold tensor product of irreducible representations with signatures 
(M(1)). . . . , ( M ( J  is given; the goal is to give an orthogonal direct sum decomposition of the 
r-fold tensor product into irreducible representations of U(N) .  This is equivalent to finding 
shift operators which map the irreducible representation space V(") into an orthogonal direct 
sum of Z(V("')) n If(". We begin by forming an n-tuple of integers from the entries of 
(M,,)), . .~. , (M(,)) by deleting the non-zero entriesfrom each (M(i)) .  Next we introduce the 
Fock space F(CnxN) and define an action R of U(N) on F by right translation. In fact, 
we only need to consider a finite-dimensional subspace of F(CnXN), namely which 
consists of polynomials which transform covariantly with respect to the diagonal subgroup 
D,, c GL(n, C). By theorem 2.1 the number of times that V('") occurs in P(M is equal to 
the dimension of the weight space (M) in V@". This multiplicity is calculated by generating 
the set of all Gelfand tableaux ($ with weight (M). We then use these tableaux to construct 
a basis for HomH(V@), P'"). The space W(" which is isomorphic to the r-fold tensor 
product @ .  . 8 (&)) is defined to be the set of all polynomials in P(" which are 
simultaneously annihilated by the infinitesimal raising operators of G', Lup,pp,. We choose 
a commuting family of invariant operators XI, . . . , X, in CuCHr)(G') whose eigenvalues 
can be used to break the multiplicity of V('") in W(". To break this multiplicity we 
construct shift operators AI , .  . .,A, which satisfy [ X i A j l  f = &j(m)Aj f ,  i = 1 , .  . . , q, 
j = 1, . . . , p. To construct these shift operators we use the algorithm described in the proof 
of theorem 3.1 to generate q-simultaneously diagonalizable matrices whose eigenvalues are 
used to break the multiplicity and whose eigenvectors generate the shift operators. It should 
be noted that our method of diagonalizing these invariant operators depends only on the 
commutation relations of the Lie'algebra generated by the infinitesimal operators of X' and 
the action of these operators on the given irreducible representation space V("'). Finally we 
form the polynomials Alf.. . . , A,F, where f E V('"), and explicitly calculate Lep,ppi& f 
i = l ,  ..., r , k = l ,  ...., p. 

Those polynomials which are simultaneously diagonalized by all the,Lp,ppi then give 
us an orthogonal direct sum decomposition of Z(V('")) n W(m. 

There are still a number of problems associated with the tensor product decomposition 
of arbitrary irreducible representations of U(N). In this paper we have shown how the 
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multiplicity problem may be stated for arbitrary groupsubgroup pairs and then applied this 
formalism to the decomposition of tensw products. In  particular, we have shown that shift 
operators always exist for this problem and given an outline of how these shift operators 
can be generated. In a forthcoming paper we will discuss the computational aspects of this 
problem as well as show how to deal with irrational eigenvalues of our invariant operators 
[SI. We also plan to generalize Hughes's problem, that is to investigate the multiplicity 
problem for U(N) restricted to SO(N) and to Sp(N). 
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